Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
China Pharmacy ; (12): 525-530, 2023.
Article in Chinese | WPRIM | ID: wpr-964759

ABSTRACT

OBJECTIVE To investigate the effect of raw and wine-processed Schisandra chinensis on neuro-immune-endocrine network in insomnia mice and its mechanism. METHODS Fifty mice were randomly divided into blank group, model group, diazepam group, raw S. chinensis group and wine-processed S. chinensis group, with 10 mice in each group. Except for blank group, the mice in the other groups were intraperitoneally injected with thyroxine solution to establish mice model of insomnia; at the end of each day’s modeling, the corresponding doses of diazepam,raw and wine-processed S. chinensis were given by gavage. The blank group and model group were given constant volume of normal saline. The general state of the mice was observed and recorded, and the total activity distance and upright times of the mice were detected; the EEG and EMG signals of mice were recorded, and the time ratio of sleep wake time (wake), non-rapid eye movement (NREM) and rapid eye movement (REM) was analyzed; the contents of neurotransmitters [γ-aminobutyric acid (GABA), 5-hydroxytryptamine (5-HT), dopamine (DA), norepinephrine (NE), cortisol (CORT)] in brain suprachiasmatic nucleus (SCN) were detected; and the expressions of tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were detected; the mRNA expressions of clock gene Bmal1, circadian clock gene Clock and cycle gene Per2 were all detected. RESULTS Compared with the blank group, the mental state of the model group mice was relatively depressed, the amount of food and water increased, the body mass decreased, the hair was rough and shiny, and the circadian rhythm was irregular; the total activity distance and upright times decreased significantly; the time ratio of wake increased significantly, while the time ratios of REM and NREM decreased significantly; the content of 5- HT in brain SCN decreased significantly, while the content of NE, DA and CORT increased significantly; the fluorescence intensity of IL-1β and TNF-α was significantly increased; the relative expression level of Bmal1 and Clock mRNA was significantly increased, while the relative expression level of Per2 mRNA was significantly decreased (P<0.05 or P<0.01). Compared with the model group, the general state of mice in diazepam group, raw S. chinensis group and wine-processed S. chinensis group was improved obviously, and most of the above index levels were significantly reversed (P<0.05 or P<0.01). CONCLUSIONS Raw and wine-processed S. chinensis have a certain therapeutic effect on insomnia mice, the mechanism of which may be related to the regulation of neuro-endocrine-immune system related biological indicators in insomnia mice.

2.
China Pharmacy ; (12): 315-320, 2023.
Article in Chinese | WPRIM | ID: wpr-961665

ABSTRACT

OBJECTIVE To study the pharmacological basis of Schisandra chinensis in the treatment of allergic asthma. METHODS The common components of 10 batches of S. chinensis from different habitats were analyzed by UPLC-Q-TOF-MS/MS. Furthermore, the allergic asthma model was established by intraperitoneal injection of ovalbumin (OVA) and aluminum hydroxide for stimulation combined with atomization exitation; general behavioral observation and the contents of interferon γ (IFN-γ), interleukin-4 (IL-4) and immunoglobulin E (IgE) in serum were taken as criteria for evaluating the therapeutic effect of S. chinensis from different habitats in the treatment of allergic asthma. Correlation coefficients between common peak area and efficacy evaluation index of each batch of medicinal material were analyzed through grey correlation degree and Pearson correlation analysis. RESULTS A total of 21 common components were identified in 10 batches of S. chinensis from different habitats. After administration of S. chinensis, symptoms such as shortness of breath, sneezing and curling of rats were alleviated. In addition, the content of IFN-γ was significantly increased while the contents of IL-4 and IgE in serum were distinctly decreased (P<0.01). Grey correlation analysis showed that 11 common components had high correlation coefficients with IFN-γ, IL-4 and IgE (rˉ>0.8). Pearson correlation analysis showed that 8 components were significantly positively correlated with the content of IFN-γ (P< 0.05), and 9, 8 components were significantly negatively correlated with the content of IL-4 and IgE (P<0.05). Based on the results of grey correlation degree and Pearson correlation analysis, 7 components such as peak 3, 4, 6, 7, 9, 19 and 20, were highly related to S. chinensis in the treatment of allergic asthma. CONCLUSIONS Schisandrol A, schisandrin B, schisandrin C, gomisin M2, gomisin J, pregomisin and angeloylgomisin H are the potential pharmacodynamic substance basis of S. chinensis in the treatment of allergic asthma.

3.
China Journal of Chinese Materia Medica ; (24): 861-878, 2023.
Article in Chinese | WPRIM | ID: wpr-970558

ABSTRACT

Schisandra chinensis, a traditional Chinese medicinal herb, is rich in chemical constituents, including lignans, triterpenes, polysaccharides, and volatile oils. Clinically, it is commonly used to treat cardiovascular, cerebrovascular, liver, gastrointestinal, and respiratory diseases. Modern pharmacological studies have shown that S. chinensis extract and monomers have multiple pharmacological activities in lowering liver fat, alleviating insulin resistance, and resisting oxidative stress, and have good application prospects in alleviating nonalcoholic fatty liver disease(NAFLD). Therefore, this study reviewed the research progress on chemical constituents of S. chinensis and its effect on NAFLD in recent years to provide references for the research on S. chinensis in the treatment of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Schisandra , Insulin Resistance , Lignans
4.
Acta Pharmaceutica Sinica ; (12): 377-385, 2023.
Article in Chinese | WPRIM | ID: wpr-965697

ABSTRACT

To investigate the mechanism by which Schisandra Chinensis mediates the phenotypic transformation of microglia via microRNA-124 (miR-124)-based regulation of the Toll-like receptor 4 (TLR4) pathway, a model was established using lipopolysaccharide (LPS) stimulation of BV2 cells. Cells were treated with different doses of Schisandra Chinensis extract (SCE). MiR-124 inhibitors and negative control sequences (NC inhibitor) were transfected into LPS-induced BV2 cells and treated with SCE. The MTT assay was used for cell activity detection; an NO kit was used to measure NO release; ELISA kits were used to measure the levels of interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α). Microglia markers, including ionized calcium binding adapter molecule-1 (IBA-1) and arginase-1 (Arg-1), and the nuclear translocation of nuclear factor-kappa B (NF-κB) were evaluated by immunofluorescent staining. NF-κB p65, IBA-1, Arg-1, TLR4, myeloid differentiation primary factor 88 (MyD88), inhibitor of nuclear factor-kappa B kinases-α (IKK-α), IL-10, TNF-α were detected by immunoblot. SCE at concentrations ranging from 31.25 to 250 μg·mL-1 had no significant effect on cell activity. SCE treatment significantly inhibited NO release induced by LPS (P < 0.001, P < 0.01), increased the level of IL-10 (P < 0.05), and decreased the level of TNF-α (P < 0.001). In addition, SCE significantly reduced the expression of TNF-α, IBA-1, TLR4, and MyD88 (P < 0.01, P < 0.001) and elevated the expression of IL-10, Arg-1, NF-κB P65 and IKK-α (P < 0.001, P < 0.01, P < 0.05). SCE treatment could also promote the expression of miR-124 (P < 0.01). However, transfection with the miR-124 inhibitor increased TNF-α (P < 0.001), decreased the level of IL-10 (P < 0.05), increased the mRNA level and the protein expression of TNF-α and IBA-1 (P < 0.05, P < 0.01, P < 0.001), and decreased the mRNA level and protein expression of IL-10 and Arg-1 (P < 0.001, P < 0.01). In addition, the inhibition of TLR4 and MyD88 was attenuated. In conclusion, SCE appears to inhibit the activation of TLR4 signaling pathway by upregulating miR-124 so as to inhibit microglia M1 polarization and promote microglia M2 polarization.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 102-109, 2022.
Article in Chinese | WPRIM | ID: wpr-940626

ABSTRACT

ObjectiveTo observe the effect of polysaccharides from root, stem, leaf and fruit of Schisandra chinensis on exercise endurance in the aging mice induced by D-galactose. MethodMale ICR mice were randomly assigned into six groups: blank control group, model group, root polysaccharide group, stem polysaccharide group, leaf polysaccharide group and fruit polysaccharide group. The mice were administrated with distilled water or root, stem, leaf and fruit polysaccharide (total sugar content of 35 mg·kg-1) by gavage. Thirty minutes after the administration, the blank control group was subcutaneously injected with normal saline, and the other groups with D-galactose (300 mg·kg-1), once daily for 6 weeks. The anti-fatigue effects were evaluated by rotarod test, forelimb grip strength test, and weight-loaded swimming test. The fatigue and oxidation indicators such as blood urea nitrogen (BUN), serum lactic acid (LD), lactic dehydrogenase (LDH), creatine kinase (CK), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and reactive oxygen species (ROS) were measured by chemical colorimetry. The protein levels of pro-apoptotic protein B cell lymphoma-2 (Bcl-2)-associated X protein (Bax), anti-apoptotic Bcl-2 and cleaved cysteinyl aspartate-specific protease-3 (cleaved Caspase-3) in mouse skeletal muscle were detected by Western blot. ResultIn the rotarod test, the time on rod was shorter in the model group than in the blank control group (P<0.01) and the root, stem and fruit polysaccharide groups (P<0.01). In the forelimb grip strength test, the forelimb grip strength in the model group was lower than that in the blank control group (P<0.01) and the root, stem, leaf and fruit polysaccharide groups (P<0.01). In the weight-loaded swimming test, the weight-loaded swimming time in the model group was shorter than that in the blank control group (P<0.01) and the root, stem, leaf and fruit polysaccharide groups (P<0.01). Compared with those in the blank control group, the BUN, LD, LDH and CK levels significantly increased in the model group (P<0.05, P<0.01). The increases in BUN and LDH levels were decreased by the root, stem and fruit polysaccharides (P<0.05, P<0.01) and those in LD and CK by the root, stem, leaf and fruit polysaccharides (P<0.05, P<0.01). Compared with the blank control group, the model group showed decreased SOD and GSH-Px activities (P<0.01) and increased MDA and ROS content (P<0.01). Compared with the model group, the root, stem, and fruit polysaccharide increased the SOD activity (P<0.05, P<0.01) and decreased ROS content (P<0.01). The root and stem polysaccharides decreased the MDA content (P<0.01) and increased the GSH-Px activity (P<0.05, P<0.01). Compared with the blank control group, the model group showed up-regulated protein levels of Bax and cleaved Caspase-3 and down-regulated protein level of Bcl-2 (P<0.01). Compared with the model group, the root, and stem polysaccharides down-regulated the protein levels of cleaved Caspase-3 (P<0.05) and up-regulated protein level of Bcl-2 (P<0.01). ConclusionThe polysaccharides from the root, stem, leaf, and fruit of S. chinensis have anti-fatigue effect in D-galactose-induced aging mice. The polysaccharides may exert such effect by improving the antioxidant capacity and inhibiting the apoptosis of skeletal muscle cells.

6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 527-536, 2022.
Article in English | WPRIM | ID: wpr-939917

ABSTRACT

Phenylalanine ammonia-lyase (PAL), which catalyzes the conversion from L-phenylalanine to trans-cinnamic acid, is a well-known key enzyme and a connecting step between primary and secondary metabolisms in the phenylpropanoid biosynthetic pathway of plants and microbes. Schisandra chinensis, a woody vine plant belonging to the family of Magnoliaceae, is a rich source of dibenzocyclooctadiene lignans exhibiting potent activity. However, the functional role of PAL in the biosynthesis of lignan is relatively limited, compared with those in lignin and flavonoids biosynthesis. Therefore, it is essential to clone and characterize the PAL genes from this valuable medicinal plant. In this study, molecular cloning and characterization of three PAL genes (ScPAL1-3) from S. chinensis was carried out. ScPALs were cloned using RACE PCR. The sequence analysis of the three ScPALs was carried out to give basic characteristics followed by docking analysis. In order to determine their catalytic activity, recombinant protein was obtained by heterologous expression in pCold-TF vector in Escherichia coli (BL21-DE3), followed by Ni-affinity purification. The catalytic product of the purified recombinant proteins was verified using RP-HPLC through comparing with standard compounds. The optimal temperature, pH value and effects of different metal ions were determined. Vmax, Kcat and Km values were determined under the optimal conditions. The expression of three ScPALs in different tissues was also determined. Our work provided essential information for the function of ScPALs.


Subject(s)
Cloning, Molecular , Escherichia coli/metabolism , Phenylalanine/metabolism , Phenylalanine Ammonia-Lyase/chemistry , Recombinant Proteins , Schisandra/genetics
7.
Chinese journal of integrative medicine ; (12): 603-611, 2022.
Article in English | WPRIM | ID: wpr-939787

ABSTRACT

OBJECTIVE@#To investigate the protective effects of Schisandra chinensis oil (SCEO) against aristolochic acid I (AA I)-induced nephrotoxicity in vivo and in vitro and elucidate the underlying mechanism.@*METHODS@#C57BL/6 mice were randomly divided into 5 groups according to a random number table, including control group, AA I group, and AA I +SCEO (0.25, 0.5 and 1 g/kg) groups (n=5 per group). Pretreatment with SCEO was done for 2 days by oral administration, while the control and AA I groups were treated with sodium carboxymethyl cellulose. Mice of all groups except for the control group were injected intraperitoneally with AA I (5 mg/kg) from day 3 until day 7. Histopathological examination and apoptosis of kidney tissue were observed by hematoxylin and eosin and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatinine (SCr), as well as renal malondialdehyde (MDA), glutathione, r-glutamyl cysteingl+glycine (GSH), and superoxide dismutase (SOD) were analyzed using enzyme-linked immunosorbent assay (ELISA). Expressions of hepatic cytochrome P450 1A1 (CYP1A1), CYP1A2, and nad(p)hquinonedehydrogenase1 (NQO1) were analyzed using ELISA, quantitative real-time polymerase chain reaction (qPCR) and Western blot, respectively. In vitro, SCEO (40 µ g/mL) was added 12 h before treatment with AA I (40 µ mol/mL for 48 h) in human renal proximal tubule cell line (HK-2), then apoptosis and reactive oxygen species (ROS) were analyzed by flow cytometry.@*RESULTS@#SCEO 0.5 and 1 g/kg ameliorated histopathological changes and TUNEL+ staining in the kidney tissues of mice with AA I-induced nephrotoxicity, and reduced serum levels of ALT, AST, BUN and SCr (P<0.01 or P<0.05). SCEO 0.5 and 1 g/kg alleviated the ROS generation in kidney, containing MDA, GSH and SOD (P<0.01 or P<0.05). SCEO 1 g/kg increased the expressions of CYP1A1 and CYP1A2 and decreased NQO1 level in the liver tissues (P<0.01 or P<0.05). Besides, in vitro studies also demonstrated that SCEO 40 µ g/mL inhibited apoptosis and ROS generation (P<0.05 or P<0.01).@*CONCLUSIONS@#SCEO can alleviate AA I-induced kidney damage both in vivo and in vitro. The protective mechanism may be closely related to the regulation of metabolic enzymes, thereby inhibiting apoptosis and ROS production.


Subject(s)
Animals , Mice , Apoptosis , Aristolochic Acids/toxicity , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Glutathione/metabolism , Kidney/drug effects , Kidney Diseases/drug therapy , Mice, Inbred C57BL , Oxidative Stress , Plant Oils/therapeutic use , Protective Agents/therapeutic use , Reactive Oxygen Species/metabolism , Schisandra , Superoxide Dismutase/metabolism
8.
China Journal of Chinese Materia Medica ; (24): 1582-1586, 2022.
Article in Chinese | WPRIM | ID: wpr-928087

ABSTRACT

This study investigated the chemical components from the leaves and stems of Schisandra chinensis. Three norsesquiterpenoids were isolated from S. chinensis by various column chromatographies(silica gel, Sephadex LH-20, and MCI), reversed-phase medium-pressure preparative, and semi-preparative high-performance liquid chromatography(HPLC). Their structures were identified based on physicochemical properties, mass spectrometry(MS), nuclear magnetic resonance(NMR), ultraviolet(UV), and electro-nic circular dichroism(ECD) as(3R,4R,5R,6S,7E)-3,4,5,6-tetrahydroxy-7-megastigmen-9-one(1),(3S,5R,6R,7E)-3,5,6-trihydroxy-7-megastigmen-9-one(2), and(3S,4R,9R)-3,4,9-trihydroxymegastigman-5-ene(3). Compound 1 was a new compound, and its absolute configuration was determined by ECD. Compounds 2 and 3 were isolated from the Schisandra plant for the first time.


Subject(s)
Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry , Plant Leaves/chemistry , Schisandra
9.
China Pharmacy ; (12): 1088-1093, 2022.
Article in Chinese | WPRIM | ID: wpr-923757

ABSTRACT

OBJECTIVE To study the effects of the compatibility of Schisandra chinensis on Psoralea corylifolia -induced oxidative damage and endoplasmic reticulum stress in L 02 hepatocytes,and to provide reference for clinical use of the compatibility attenuation of P. corylifolia -S. chinensis . METHODS L02 cells were divided into blank control group ,P. corylifolia model group (1 200 μg/mL P. corylifolia ,calculated by crude drug ),P. corylifolia -S. chinensis low-dose,medium-dose and high-dose groups (1 200 μg/mL P. corylifolia combined with 600,1 200,2 400 μg/mL S. chinensis ,respectively,calculated by crude drug ). After the cells in each group were cultured in culture medium or drug solution for 48 hours,the levels of aspartate aminotransferase(AST)and alanine aminotransferase (ALT)were detected ;the levels of glutathione (GSH),superoxide dismutase (SOD)and malondialdehyde (MDA)in cell culture medium were detected ;reactive oxygen species (ROS)level and mitochondrial membrane potential in cells were detected ;mRNA and protein expressions of glucose-regulated protein 78(GRP-78)and protein kinase R-like endoplasmic reticulum kinase (PERK)were detected. RESULTS Compared with blank control group ,the levels of AST,ALT,MDA and ROS ,mRNA and protein expressions of GRP- 78 and PERK were increased significantly in P. corylifolia model group (P<0.05 or P<0.01);while GSH and SOD levels ,mitochondrial membrane potential were decreased significantly (P<0.05 or P<0.01). Compared with P. corylifolia model group ,above indexes of P. corylifolia -S. chinensis low-dose, medium-dose and high-dose groups were all improved significantly (P<0.05 or P<0.01). CONCLUSIONS The compatibility of P. corylifolia -S. chinensis can alleviate P. corylifolia -induced oxidative damage and endoplasmic reticulum stress of L 02 cells.

10.
China Pharmacy ; (12): 1453-1459, 2021.
Article in Chinese | WPRIM | ID: wpr-881281

ABSTRACT

OBJECTIVE:To establ ish characteristic pattern of vinegar-processed product of Schisandra chinensis formula granules from different habitats ,and to determine the contents of 5 components. METHODS :HPLC method was adopted. The determination was performed on Agilent ZORBAX SB-C 18 column with mobile phase consisted of acetonitrile-water (gradient elution)at the flow rate of 1.0 mL/min. The column temperature was set at 30 ℃,and detection wavelength was set at 220 nm. The sample size was 10 µL. Using schisandrin as reference ,HPLC characteristic pattern of 19 batches of vinegar-processed S. chinensis formula granules was drawn. The similarity evaluation was performed with Similarity Evaluation System of TCM Chromatographic Fingerprints (2012 edition),and common peaks were confirmed. The contents of schisandrin ,schisandrol, angeloylgomisin H ,schizandrin and deoxyschizandrin were determined by same method. RESULTS :There were 8 common peaks in 19 batches of vinegar-processed S. chinensis formula granules ,and the similarities were all above 0.996;five of them were identified as schisandrin ,schisandrol,angeloylgomisin H ,schizandrin and deoxyschizandrin ,respectively. The linear range of schisandrin,schisandrol,angeloylgomisin H ,schizandrin and deoxyschizandrin were 0.030-0.380,0.016-0.195,0.009-0.115, 0.006-0.078 and 0.011-0.138 μg(r>0.999),respectively. RSDs of precision ,stability(24 h)and reproducibility tests were all lower than 2%. Average recoveries were 99.84%,99.54%,99.28%,100.03%,100.27%(RSD<1.4%,n=9). Average contents of five components in 19 batches of samples were in the range of 0.15%-0.36%,0.02%-0.16%,0.02%-0.06%,0.02%-0.08% and 0.08%-0.17%,respectively;among them ,total contents of five components in sample S 18 and S 19 from Hebei province were relatively high ,while those were relatively low in sample S 16 and S 17(RSD=42%);RSD of total content in other samples (S1-S15)was 12%,and was lower than that of Hebei province ;total content of five components were higher in sample from Jilin province. CONCLUSIONS : Established characteristic pattern and method for the content determination are specific and reproducible,and can be used for the quality evaluation of vinegar-processed S. chinensis formula granules. The total content fluctuation of vinegar-processed product of S. chinensis formula granules from Liaoning ,Jilin and Heilongjiang provinces is lower than that in Hebei province ,and the quality of vinegar-processed Δ 基金项目:国家中药标准化项目(No.ZYB2H-Y-GD-13) *主管中药师 ,硕士 。研究方向 :中药质量标准 。E-mail: S. chinensis formula granules from Jilin province is the best. lzz332@126.com

11.
Chinese Journal of Pharmacology and Toxicology ; (6): 766-767, 2021.
Article in Chinese | WPRIM | ID: wpr-909600

ABSTRACT

Schisandra Chinensis Fructus (SCF) is the fruit of Schisandra chinensis (Turcz.) Baill., a perennial vine. It was first recorded in Shen Nong's herbal classic and has a long application history. Studies have shown that SCF has anti-inflammatory, protective liver, antioxidant, antibacterial and other pharmacological effects. Ancient prescriptions are commonly used in the treatment of chronic diarrhea and other intestinal diseases and diabetes. Modern clinical phar?macology features of SCF polysaccharide (SCFP) in diabetes, liver diseases, enteritis and other aspects have achieved excellent results. Gut is an important digestive organ of human body, but intestinal diseases are varied, including Crohn's disease, ulcerative colitis, intestinal flora imbalance, etc.. It is a chronic and non-specific inflammatory disease. The disease is persisted for a long time and the incidence rate is expected to rise. Most of the symptoms are recurrent diarrhea, bloody stool and abdominal pain. It is considered by the World Health Organization as a refractory disease. At present, there is little possibility of complete cure, which is closely related to complex environmental factors, eating hab?its and heredity. In recent years, clinical studies have found that SCFP has a variety of pharmacological effects on intes?tinal protection.①Reduce inflammatory factors:intestinal mucositis is a common adverse reaction in patients with chemo?therapy. The development of mucositis is related to pro-inflammatory factors such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, Interferon-γ(IFN-γ). SCFP can significantly reduce IL-6 TNF-α, IL-1β, and IL-8, as well as the accumulation of T cells in the process of resisting apoptosis, reduce the inflammatory reaction and protect the dam?age to villi and crypts, improve the symptoms of small intestinal mucositis caused by weight loss and diarrhea. ② Pro?mote immunoglobulin A secretion: intestinal mucosal immunity is the first line of defense of the body's immune system. Its main antibody is secretory immunoglobulin A, which can destroy and phagocytize microorganisms, bacteria and viruses. SCFP can improve intestinal immunity by increasing the number and activity of T lymphocytes, promoting the secre?tion of secretory immunoglobulin A, and affecting the activity of a variety of cytokines. ③ Regulation of intestinal flora:the flora in the intestine has the functions of auxiliary nutrient absorption, biological antagonism and immune regulation, and can form a natural barrier for the host's intestine. When the human intestinal flora is disordered, probiotics will be greatly reduced, harmful bacteria will proliferate and destroy the intestinal environment. Under these conditions, the intake of SCFP significantly increased the number of beneficial bacteria such as bifidobacteria and lactobacillus, and sig?nificantly decreased the number of conditional pathogens such as enterococcus and escherichia coli, indicating that SCFP can indeed regulate the intestinal disorder caused by lincomycin hydrochloride to a certain extent. This may be because beneficial bacteria in the intestine metabolize polysaccharides produce short chain fatty acids such as lactic acid and acetic acid, which reduces the pH value in the intestine and inhibits the growth of enterococcus and Escherichia coli. In conclusion, SCFP can treat and protect intestinal diseases to a certain extent, which provides a favorable basis for the treatment of intestinal diseases.

12.
China Pharmacy ; (12): 3008-3013, 2021.
Article in Chinese | WPRIM | ID: wpr-906782

ABSTRACT

OBJECTIVE:To establish the fingerprint of wine-processed Schisandra chinensis ,and to conduct cluster analysis and principal component analysis. METHODS :HPLC method was adopted. The determination was performed on Diamonsil C 18(2) column with mobile phased consisted of methanol-water (gradient elution )at the flow rate of 1 mL/min. The detection wavelength was set at 250 nm,and the column temperature was 30 ℃;the injection volume was 10 μL. With schisandrol A as the reference peak,HPLC fingerprints of 15 batches of samples were drawn and their similarity were evaluated with Similarity Evaluation System of TCM Chromatographic Fingerprint (2012 edition). The common peaks were determined. Cluster analysis and principal component analysis were performed by using SPSS 22.0 statistical software. RESULTS :There were 20 common peaks in 15 batches of samples ,and the similarities were 0.983-0.999;a total of 8 common peaks were identified ,namely 5-hydroxymethyl furfural,schisandrol A ,schisandrol B ,schisantherin A ,schisantherin B ,deoxyschizandrin,γ-schizandrin,pseudo-γ-schizandrin. The results of cluster analysis showed that 15 batches of wine-processed S. chinensis could be clustered into 4 categories. Among them,S1-S4 and S 14 were clustered into one category ,S9-S11 were clustered into one category ,S5,S7-S8,S12-S13 were clustered into one category ,and S 6 and S 15 were clustered into one category. The results of principal component analysis showed that the cumulative variance contribution rate of first four principal component s was 85.381%;the classification results were basically consistent with the results of cluster analysis. Compared with S. chinensis ,5-hydroxymethyl furfural was newly found in S. chinensis after wine-processing ,with high content ;but there was no significant difference in the other chromatographic peaks. CONCLUSIONS:The established HPLC fingerprint is simple and easy to operate ,combined with cluster analysis and principal component analysis ,can be used for quality control of wine-processed S. chinensis decoction pieces.

13.
China Pharmacy ; (12): 2599-2604, 2021.
Article in Chinese | WPRIM | ID: wpr-904517

ABSTRACT

OBJECTIVE:To stud y the effects of “green removing ”processing technology of fresh fruit of Schisandra chinensis after harvested on the quality of medicinal material ,and to provide new ideas for the scientific and rational processing of Chinese medicinal material. METHODS :Fifteen fresh fruits of S. chinensis were used as samples ,with 3 samples in each group. The sample were processed preliminarily by 5 methods,such as drying at 50 ℃,drying in the sun ,drying at 50 ℃ after“green removing”processing with microwave ,drying at 50 ℃ after“green removing ”processing with blanching ,drying at 50 ℃ after “green removing ”processing with steaming. HPLC fingerprints of 15 batches of dried S. chinensis products were established and similarity evaluation was conducted according to Similarity Evaluation System of TCM Chromatographic Fingerprints (2012 edition). Cluster analysis was used to evaluate the similarity of dried S. chinensis products with different processing methods. At the same time ,HPLC method was adopted to determine the content changes of seven lignans in dried products ,such as schisandrol A , schisandrol B ,schisantherin A ,schisantherin B ,schizandrin A ,schisandrin B and schisandrin C. RESULTS :A total of 7 common peaks were obtained in the fingerprints of 15 batches of dried S. chinensis products. Except that the similarity between the chromatograms of dried samples in the sun and the control fingerprint was relatively low ,the similarities of chromatograms of dried products by other processing methods were greater than 0.900. Cluster analysis showed that 6 samples dried at 50 ℃ after“green removing”processing with microwave and dried at 50 ℃ after“green removing ”processing with blanching were grouped into the first category ;3 samples dried at 50 ℃ after“green removing”processing with steaming were grouped into the second category ;6 samples dried at 50 ℃ and dried in sun were grouped into the third category. The content determination results showed that there was no significant difference in the total content of seven lignans in the samples dried at 50 ℃ and dried in the sun (P>0.05). The total contents of seven lignans in the samples dried at 50 ℃ after“green moving ” processing with microwave ,blanching and steaming were significantly higher than those dried at 50 ℃ and dried in sun (P<0.01). CONCLUSIONS:The quality of S. chinensis samples dried after “green moving ”processing with microwave and blanching is better than those directly dried in sun and dried in oven.

14.
China Journal of Chinese Materia Medica ; (24): 5270-5277, 2021.
Article in Chinese | WPRIM | ID: wpr-921672

ABSTRACT

Dirigent(DIR) proteins are involved in the biosynthesis of lignin, lignans, and gossypol in plants and respond to biotic and abiotic stresses. Based on the full-length transcriptome of Schisandra chinensis, bioinformatics methods were used to preliminarily identify the DIR gene family and analyze the physico-chemical properties, subcellular localization, conserved motifs, phylogeny, and expression patterns of the proteins. The results showed that a total of 34 DIR genes were screened and the encoded proteins were 156-387 aa. The physico-chemical properties of the proteins were different and the secondary structure was mainly random coil. Half of the DIR proteins were located in chloroplast, while the others in extracellular region, endoplasmic reticulum, cytoplasm, etc. Phylogenetic analysis of DIR proteins from S. chinensis and the other 8 species such as Arabidopsis thaliana, Oryza sativa, and Glycine max demonstrated that all DIR proteins were clustered into 5 subfamilies and that DIR proteins from S. chinensis were in 4 subfamilies. DIR-a subfamily has the unique structure of 8 β-sheets, as verified by multiple sequence alignment. Finally, through the analysis of the transcriptome of S. chinensis fruit at different development stages, the expression pattern of DIR was clarified. Combined with the accumulation of lignans in fruits at different stages, DIR might be related to the synthesis of lignans in S. chinensis. This study lays a theoretical basis for exploring the biological functions of DIR genes and elucidating the biosynthesis pathway of lignans in S. chinensis.


Subject(s)
Fruit/genetics , Lignans/analysis , Phylogeny , Schisandra , Sequence Alignment
15.
China Pharmacy ; (12): 3007-3012, 2020.
Article in Chinese | WPRIM | ID: wpr-843080

ABSTRACT

OBJECTIVE:To investigate the internal mechanism of Schisandra sphenanthera and Schisandra chinensis in determining quality by color (“color discrimination grading ”)of medicinal materials ,and to construct a qualitative identification model based on color quantization value. METHODS :HPLC method was used to determine the contents of 6 active components from 39 batches of samples. The colorimeter was used to determine 3-color spatial value [lightness value (ΔL*),red-green value (Δa*),yellow-blue value (Δb*)]. SPSS 24.0 statistical software was used to analyze the correlation between the contents of 6 active components and 3-color spatial values. Principal component analysis (PCA)was performed by using SIMCA-P 14.1 software. RESULTS:The linear range of schizandrol A ,schizandrol B ,schisandrin A ,schisandrin B ,schisandrin C ,schisantherin A were 0.204 8-2.560 0,0.049 3-0.616 3,0.098 4- 1.230 0,0.046 3-0.578 8,0.010 6-0.132 0,0.100 0-1.500 0 μg(r>0.999 0);RSDs of precision ,stability(12 h)and repeatability tests were all less than 3%. The recoveries were 98.14%-101.53%(RSD=1.08%, n=6),97.16%-101.05%(RSD=1.54%,n=6),98.29%-101.41%(RSD=1.29%,n=6),97.17%-100.36%(RSD=1.20%,n= 6),97.32%-102.43%(RSD=1.77%,n=6)and 98.02%-100.40%(RSD=0.84%,n=6),respectively. Among 39 batches of components were 3.25-7.39,0.96-1.98,0.46-4.74,1.62-2.60, 0.06-0.58,0.48-6.11 mg/g,respectively. Average S. chinensis was - 80.79-- 70.54, average Δ a * was qq.com # 通 2.54-5.34,average Δb* was 5.20-12.83,average ΔE* was 71.13-81.23;average ΔL* of S. sphe nanthera was -75.90- -69.16,average Δa* was 3.77-7.82,average Δb* was 8.59-17.23,average ΔE* was 69.99-77.92. The results of relationship analysis showed that the contents of schizandrol A ,schizandrol B ,schisandrin A ,schisandrin B and schisantherin A were significantly correlated with ΔL*,Δa*,ΔE*(P<0.01),with no significant correlation with Δb*(P>0.05). There was a negative correlation of the content of schisandrin C with ΔL* and Δa*(P<0.05),and there was no significant correlation with Δb* and ΔE* (P>0.05). Results of PCA showed that accumulative variance contribution rate of primary 2 main components was 89.8%,and S. sphenanthera and S. chinensis could be identified significantly. CONCLUSIONS :The content of schizandrol A in S. chinensis is high relatively ,and content of schisantherin A in S. sphenanthera is high relatively. Schizandrol A ,schizandrol B and schisandrin B were not detected in S. sphenanthera . The 3-color spatial value of S. sphenanthera and S. chinensis are different ,that is ,the brightness of S. chinensis is small and the color is slant black ,while the color of S. sphenanthera is slant red and yellow. The contents of active components of S. sphenanthera and S. chinensis is related to the surface 3-color spatial values ,that is ,the darker the color is ,the weaker the red degree is ,and the higher the contents of schizandrol A ,schizandrol B ,schisandrin B and schisandrin C are ;the brighter the surface color is ,the stronger the red degree is ,and the higher the contents of schisandrin A and schisantherin A are. The established content determination method is precise and stable ,and can be used for the content determination of S. sphenanthera and S. chinensis . The color qualitative identification model can be used for the identification of S. sphenanthera and S. chinensis .

16.
Chinese Herbal Medicines ; (4): 247-256, 2020.
Article in Chinese | WPRIM | ID: wpr-842008

ABSTRACT

Objective: Schisandra sphenanthera and S. chinensis are the two important medicinal plants that have long been used under the names of “Nan-Wuweizi” and “Wuweizi”, respectively. The misuse of “Nan-Wuweizi” and “Wuweizi” in herbal medical products calls for an accurate method to distinguish these herbs. Chloroplast (cp) genomes have been widely used in species delimitation and phylogeny due to their uniparental inheritance and lower substitution rates than that of the nuclear genomes. To develop more efficient DNA markers for distinguishing S. sphenanthera, S. chinensis, and the related species, we sequenced the cp genome of S. sphenanthera and compared it to that of S. chinensis. Methods: The cp genome of S. sphenanthera was sequenced at the Illumina HiSeq platform, and the reference-guided mapping of contigs was obtained with a de novo assembly procedure. Then, comparative analyses of the cp genomes of S. sphenanthera and S. chinensis were carried out. Results: The cp genome of S. sphenanthera was 146 853 bp in length and consisted of a large single copy (LSC) region of 95 627 bp, a small single copy (SSC) region of 18 292 bp, and a pair of inverted repeats (IR) of 16 467 bp. GC content was 39.6%. A total of 126 functional genes were predicted, of which 113 genes were unique, including 79 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Five tRNA, four protein-coding genes, and all rRNA were duplicated in the IR regions. There were 18 intron-containing genes, including six tRNA genes and 12 protein-coding genes. In addition, 45 SSRs were detected. The whole cp genome of S. sphenanthera was 123 bp longer than that of S. chinensis. A total of 474 SNPs and 97 InDels were identified. Five genetic regions with high levels of variation (Pi > 0.015), trnS-trnG, ccsA-ndhD, psbI-trnS, trnT-psbD and ndhF-rpl32 were revealed. Conclusion: We reported the cp genome of S. sphenanthera and revealed the SNPs and InDels between the cp genomes of S. sphenanthera and S. chinensis. This study shed light on the species identification and further phylogenetic study within the genus of Schisandra.

17.
Journal of Jilin University(Medicine Edition) ; (6): 50-55, 2020.
Article in Chinese | WPRIM | ID: wpr-841580

ABSTRACT

Objective: To observe the effect of Schisandra Chinensis polysaccharide (SCP) on the serum inflammatory factors in the rats with type 2 diabetes mellitus (T2DM) induced by high-fat diet and low dose of streptozotocin (STZ), and to explore its underlying mechanism in the treatment of T2DM. Methods: The male Wistar rats were given high-fat diet and introperieoneally injected with low dose of STZ (30 mg · kg-1) in one time to establish the rat T2DM models. The successful model rats were randomly divided into model group, low dose (25 mg · kg-1)of SCP group, middle dose (50 mg · kg-1) of SCP group and high dose (100 mg · kg-1) of SCP group; there were 10 rats in each group. Another 10 healthy rats were used as normal control group. Eight weeks after the intragastric administration of SCP, oral glucose tolerance test (OGTT) was performed in the rats of various groups. The fasting blood glucose (FBG) and insulin (INS) levels were detected by glucose oxidase method and radioimmunoassay method, respectively, and the insulin sensitivity index (ISI) was calculated. The levels of interleukin-6 (IL-6), C-reactive protein (CRP), interleukin-lβ (IL-lβ), tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) in serum of the rats were measured by enzyme linked immunosorbent assay (ELISA) method. HE staining was used to observe the pathomorphology of pancreas tissue of the rats. Results: Compared with normal control group, the serum FBG level of the rats in model group was significantly increased (P<0.01), and the area under the curve (AUC) of blood glucose of the rats was significantly increased, the serum INS level and the ISI were significantly decreased (P<0.05 or P<0.01); the levels of IL-6, CRP, IL-1β, TNF-α, and NF-κB in serum were all significantly increased (P<0.05 or P<0.01). Compared with model group, the serum FBG levels of the rats in different doses of SCP groups were markedly decreased (P<0.05), the AUC of blood glucose of the rats were significantly decreased, the INS and the ISI levels were significantly elevated (P<0.05); the levels of IL-6, CRP, IL-1β, TNF-α and NF-κB in serum were significantly decreased (P<0.05 or P<0.01). Compared with low dose of SCP group, the FBG levels of the rats in middle and high doses of SCP groups were significantly decreased (P<0.05), the serum INS level of the rats in high dose of SCP group was significantly increased (P<0.05). The HE staining results showed that compared with normal control group, the islets were atrophied, the number of cells in islets was decreased and the boundary was irregular in model group; compared with model group, the islet boundary in different doses of SCP groups became clear, the areas were increased, and the number cells was increased significantly. Conclusion: SCP can decrease the FBG level, increase the INS level and improve insulin resistance (IR) in the T2DM rats induced by high-fat diet combined with low dose of STZ, and its mechanism might be related to its inhibiting inflammation response.

18.
Acta Pharmaceutica Sinica ; (12): 2226-2233, 2020.
Article in Chinese | WPRIM | ID: wpr-825745

ABSTRACT

The 2-oxoglutarate-dependent dioxygenase (2-ODD) gene is regarded as the key enzyme gene involved with aryl naphthalene lignan-podophyllotoxin synthesis. To study the expression pattern and function of the Sc2-ODD gene, a full-length cDNA of the gene was cloned. Bioinformatic analysis, the expression pattern, and prokaryotic expression and purification were implemented. The open reading frame of Sc2-ODD gene was 1 077 bp and encoded 358 amino acids with a molecular weight of 40.16 kD. The Sc2-ODD protein contained the conserved 2OG-FeII-oxy sequence of the 2-ODD protein. The results of phylogenetic analysis revealed that Sc2-ODD is most closely related to Corchorus olitorius 2-ODD. qRT-PCR results showed that Sc2-ODD expression displayed obvious up-regulation at the fruit-swelling stage, then down-regulation in the fruit-coloring period. The Sc2-ODD gene was cloned into the bacterial expression vector pGS21T, the recombinant Sc2-ODD protein was expressed in Escherichia coli Rosetta (DE3) cells and the fusion protein was obtained and purified by GST fusion protein purification technology. This study will lay a foundation for further research on the function and expressional regulation of the Sc2-ODD gene in the aryl naphthalene lignans biosynthesis pathway, and also provides a scientific basis for improving the lignan content and the medicinal quality of Schisandra chinensis using plant genetic engineering.

19.
China Pharmacy ; (12): 2224-2229, 2020.
Article in Chinese | WPRIM | ID: wpr-825652

ABSTRACT

OBJECTIVE:To establish HPLC fingerprint of Schisandra sph enanthera and S. chinensis,and to analyze chemical pattern recognition. METHODS :HPLC method was adopted. Using schizandrin A as reference ,HPLC fingerprints of 10 batches of S. sphenanthera and S. chinensis (N1-N10,S1-S10) were drawn. Similarity Evaluation System of TCM Chromatographic Fingerprint(2012 edition)was adopted for similarity evaluation to determine the common peaks. SPSS 20.0 and SIMCA 14.1 software were used for HCA ,unsupervised madel of PCA ,supervised model of OPLS-DA. Using variable importance projection (VIP)value greater than 1 as the standard ,the differential markers that affected the quality of S. sphenanthera and S. chinensis were screened. RESULTS :S. sphenanthera and S. chinensis were identified 32 and 33 common peaks ,respectively. The similarity of 10 batches of S. sphenanthera and 10 batches of S. chinensis were all higher than 0.9,and the similarity of S. sphenanthera and S. chinensis was 0.05. A total of 19 characteristics peaks were identified ,among which five common peaks were identified as schisandraol A ,schisandraol B ,schisantherin A ,schizandrin A and schisandrin B by reference. HCA results showed that N 1-N10 were clustered into one category ,and S 1-S10 were clustered into one category ,of which N 1,N3,N8,and N 9 were clustered into one category ,and the rest were clustered into one category ;S1,S3,S6,and S 9 were grouped together ,and the rest were grouped together. The results unsupervised model of PCA showed that the cumulative variance contribution rate of the first two principal component factors was 87.20%. Supervised model of OPLS-DA showed that schizandrin A ,schisandraol A ,schisantherin A and schisandrin B were the differential markers that affected 、the quality of S. sphenanthera and S. chinensis (VIPs were 2.29,2.24,1.73,1.48,respectively). CONCLUSIONS :The established fingerprint is accurate ,scientific,simple and easy to use ,combined with multivariate statistical analysis can be 话:0395-3356116。E-mail:wangrui56116@163.com used to evaluate the quality of S. sphenantherae and S. chinensis. The components of S. sphenanthera and S. chinensis were different ,schisanolrin A is differential marker.

20.
China Pharmacy ; (12): 1336-1341, 2020.
Article in Chinese | WPRIM | ID: wpr-821798

ABSTRACT

OBJECTIVE:To study the prepar ation technology of gastric floating tablets of Schisandra chinensis total lignans (SCTL),and evaluate the quality of prepared tablets. METHODS :Based on single factor test ,the orthogonal experiment was conducted to optimize the formulation of SCTL gastric floating tablets with the contents of hydroxypropylmethylcellulose (HPMC) K15M,NaHCO3 and microcrystalline cellulose as the factors ,using starting time ,holding time and cumulative release rate of gastric floating tablets as evaluation indexes. The properties ,weight difference ,floatability and accumulative release rate of the prepared SCTL gastric floating tablets were determined. The gastric floating tablets were qualitatively identified by TLC ,and the contents of schisandrin A and total lignans were determined by HPLC and UV spectrophotometry. RESULTS :The optimal formulation of SCTL gastric floating tablets was made up of 23% SCTL extract ,20% HPMC K 15M,40% microcrystalline cellulose,15% sodium bicarbonate ,1% octadecyl alcohol and 1% polyvinylpyrrolidone. The results of detection of this preparation were in line with the related provisions of “0101 tablet”stated in 2015 edition of Chinese Pharmacopoeia (part Ⅳ). TLC indicated that the chromatogram of the test sample showed the main spots of same color as the corresponding positions of the chromatogram of schizandrol A control ,Schisandra chinensis reference substance and raw material ,while the negative control has no interference. Content determination results shows that the average content of schizandrol A and total lignans in SCTL gastric floating tablets is 3.187,19.617 mg. It was preliminarily formulated that the content limitation of schizandrol A in one tablet should not be less than 2.50 mg,and the content of total lignans (calculated by schizandrol A )should not be less than 15.50 mg. CONCLUSIONS:The preparation technology of SCTL gastric floating tablets is stable ,feasible and controllable in quality.

SELECTION OF CITATIONS
SEARCH DETAIL